Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 903: 166538, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37625731

RESUMO

Manufacturing advancements in polymer printing now allow for the addition of metal additives to thermoplastic feedstock up to 80-90 % by weight and subsequent printing on low-cost desktop 3D printers. Particles associated with metal additives are not chemically bound to the plastic polymer, meaning these particles can potentially migrate and become bioavailable. This study investigated the degree to which two human exposure pathways, oral (ingestion) and dermal (skin contact), are important exposure pathways for metals (copper, chromium, and tin) from metal-fill thermoplastics used in consumer fused filament fabrication (FFF). We found that dermal exposure to copper and bronze filaments presents the highest exposure risk due to chloride (Cl-) in synthetic sweat driving copper (Cu2+) release and dissolution. Chromium and tin were released as micron-sized particles < 24 µm in diameter with low bioaccessibility during simulated oral and dermal exposure scenarios, with potential to undergo dissolution in the gastrointestinal tract based on testing using synthetic stomach fluids. The rate of metal particle release increased by one to two orders of magnitude when thermoplastics were degraded under 1 year of simulated UV weathering. This calls into question the long-term suitability of biodegradable polymers such as PLA for use in metal-fill thermoplastics if they are designed not to be sintered. The greatest exposure risk appears to be from the raw filaments rather than the printed forms, with the former having higher metal release rates in water and synthetic body fluids for all but one filament type. For brittle feedstock that requires greater handling, as metal-fill thermoplastics can be, practices common in metal powder 3D printing such as wearing gloves and washing hands may adequately reduce metal exposure risks.


Assuntos
Cobre , Metais Pesados , Humanos , Estanho , Metais Pesados/metabolismo , Cromo , Polímeros , Impressão Tridimensional
2.
Geochim Cosmochim Acta ; 350: 46-56, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37469621

RESUMO

Green rusts (GR) are important drivers for trace metal and nutrient cycling in suboxic environments. We investigated whether green rusts would incorporate aluminum (Al) or other elements from naturally-formed clay minerals containing easily-weatherable clay minerals (e.g. mica, interlayered clays). We isolated the clay minerals from a Matapeake silt loam soil by removal of silt and sand, organic matter, and reducible oxides to study mechanisms of interaction between Fe(II) and soil-sourced clay minerals. We conducted batch Fe(II) sorption experiments at multiple near-neutral pHs (6.5-7.5) and reaction times (2 h-365 days). Mineral transformations were characterized by selective extractions, X-ray diffraction (XRD), and Fe X-ray absorption spectroscopy (XAS) analyzed by shell-fitting and linear combination fitting (LCF) with natural and synthetic standards. Clay mineral fraction contained a mixture of quartz, kaolinite, interlayered vermiculite, mica, and chlorite with significant structural Fe (2.6% wt). Uptake of Fe(II) increased with pH and kinetics were rapid until 5 days, followed by slow continuous Fe(II) uptake. Citrate-bicarbonate desorption kinetics from Fe(II) sorbed clay released more Al and silicon (Si) compared with unreacted soil clay fraction whereas magnesium (Mg) and potassium (K) were unaffected. Citrate-bicarbonate extracted Fe contained more Fe(II) than an ideal GR with an Fe(II)/Fe(III) molar ratio of 5.50. Analysis of the Fe EXAFS by both LCF and shell fitting was best modeled as a combination of Fe(III)-clay reduction to Fe(II) and precipitation of GR and Fe(II)-Al LDH. After 7 days of Fe(II) sorption, LCF identified 55.2% total Fe in clay, 33.4% GR(Cl) and 11.4% Fe(II)-Al LDH. These results provide novel evidence of Fe(II)-Al LDHs precipitating on naturally-formed soil clay minerals as a minor phase to GR. The geochemical implications are that GRs formed in soils and sediments should be considered to have Al and Si as well as Mg substitutions affecting their structure and reactivity.

3.
Front Environ Chem ; 4: 1096199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323923

RESUMO

Ecosystems downstream of mercury (Hg) contaminated sites can be impacted by both localized releases as well as Hg deposited to the watershed from atmospheric transport. Identifying the source of Hg in water, sediment, and fish downstream of contaminated sites is important for determining the effectiveness of source-control remediation actions. This study uses measurements of Hg stable isotopes in soil, sediment, water, and fish to differentiate between Hg from an abandoned Hg mine from non-mine-related sources. The study site is located within the Willamette River watershed (Oregon, United States), which includes free-flowing river segments and a reservoir downstream of the mine. The concentrations of total-Hg (THg) in the reservoir fish were 4-fold higher than those further downstream (>90 km) from the mine site in free-flowing sections of the river. Mercury stable isotope fractionation analysis showed that the mine tailings (δ202Hg: -0.36‰ ± 0.03‰) had a distinctive isotopic composition compared to background soils (δ202Hg: -2.30‰ ± 0.25‰). Similar differences in isotopic composition were observed between stream water that flowed through the tailings (particulate bound δ202Hg: -0.58‰; dissolved: -0.91‰) versus a background stream (particle-bound δ202Hg: -2.36‰; dissolved: -2.09‰). Within the reservoir sediment, the Hg isotopic composition indicated that the proportion of the Hg related to mine-release increased with THg concentrations. However, in the fish samples the opposite trend was observed-the degree of mine-related Hg was lower in fish with the higher THg concentrations. While sediment concentrations clearly show the influence of the mine, the relationship in fish is more complicated due to differences in methylmercury (MeHg) formation and the foraging behavior of different fish species. The fish tissue δ13C and Δ199Hg values indicate that there is a higher influence of mine-sourced Hg in fish feeding in a more sediment-based food web and less so in planktonic and littoral-based food webs. Identifying the relative proportion of Hg from local contaminated site can help inform remediation decisions, especially when the relationship between total Hg concentrations and sources do not show similar covariation between abiotic and biotic media.

4.
Sci Total Environ ; 860: 160512, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36442638

RESUMO

Material extrusion 3D printing has been widely used in industrial, educational and residential environments, while its exposure health impacts have not been well understood. High levels of ultrafine particles are found being emitted from 3D printing and could pose a hazard when inhaled. However, metals that potentially transfer from filament additives to emitted particles could also add to the exposure hazard, which have not been well characterized for their emissions. This study analyzed metal (and metalloid) compositions of raw filaments and in the emitted particles during printing; studied filaments included pure polymer filaments with metal additives and composite filaments with and without metal powder. Our chamber study found that crustal metals tended to have higher partitioning factors from filaments to emitted particles; silicon was the most abundant element in emitted particles and had the highest yield per filament mass. However, bronze and stainless-steel powder added in composite filaments were less likely to transfer from filament to particle. For some cases, boron, arsenic, manganese, and lead were only detected in particles, which indicated external sources, such as the printers themselves. Heavy metals with health concerns were also detected in emitted particles, while their estimated exposure concentrations in indoor air were below air quality standards and occupational regulations. However, total particle exposure concentrations estimated for indoor environments could exceed ambient air fine particulate standards.


Assuntos
Poluição do Ar em Ambientes Fechados , Tamanho da Partícula , Pós , Poluição do Ar em Ambientes Fechados/análise , Material Particulado , Metais/análise , Impressão Tridimensional
5.
Environ Pollut ; 316(Pt 1): 120485, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279994

RESUMO

Mercury methylation frequently occurs at the active oxic/anoxic boundary between the sediment bed and water column of lakes and reservoirs. Previous studies suggest that the predominant mercury methylation zone moves to the water column during periods of stratification and that high potential methylation rates (Km) in sediment require oxygenated overlying water. However, simultaneous measurements of methylmercury (MeHg) production in both the sediment and water column remain limited. Understanding the relative importance of sediment versus water column methylation and the impact of seasonal stratification on these processes has important implications for managing MeHg production. This study measured Km and potential demethylation rates (Kdm) using stable isotope tracers of unfiltered inorganic mercury and MeHg in sediments and water of the littoral and profundal zones of a shallow branch of the Nacimiento Reservoir in California's central coastal range. Field sampling was conducted once during winter (well-mixed/oxygenated conditions) and once during late summer (thermally stratified/anoxic conditions). The results showed very high ambient MeHg concentrations in hypolimnetic waters (up to 7.5 ng L-1; 79% MeHg/total Hg). During late summer, littoral sediments had higher Km (0.024 day-1) compared to profundal sediments (0.013 day-1). Anoxic water column Km were of similar magnitude to Km in the sediment (0.03 day-1). Following turnover, profundal sediment Km did not change significantly, but water column Km became insignificant. Summer and winter sediment Kdm were higher in profundal (2.35, 3.54 day-1, respectively) compared to the littoral sediments (0.52, 2.56 day-1, respectively). When modelled, Km in the water column could account for approximately 40% of the hypolimnetic MeHg. Our modelling results show that the remaining MeHg in the hypolimnion could originate from the profundal sediment. While further study is needed, these results suggest that addressing methylation in the water column and profundal sediment are of equal importance to any remediation strategy.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Mercúrio/análise , Sedimentos Geológicos , Metilação , Água , Estações do Ano , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
6.
J Nanopart Res ; 24(8): 153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873670

RESUMO

Surface coatings, including paints, stains, and sealants, have recently become a focus of "nano-enabled" consumer product engineering. Specifically, zinc oxide (ZnO) nanoparticles (NPs) have been introduced to surface coatings to increase UV resistance. As more "nano-enabled" products are made available for purchase, questions arise regarding their long-term environmental and human health effects. This study tracked the transformation of NP additives commonly added to consumer paints and stains using ZnO NPs as a model system. During product application and use, there is a risk of inhalation of aerosolized ZnO NPs. To investigate the potential chemical interactions and transformations that would occur after inhalation, ZnO NPs were incubated in two synthetic lung fluids (SLFs). Initial studies utilized ZnO NPs dispersed in Milli-Q water (control), or a commercially available deck stain. Additionally, two commercially available products advertising the inclusion of ZnO NP additives were evaluated. Subsamples were taken throughout incubation and analyzed via atomic absorption spectroscopy to determine both the total (including particulate) zinc concentration and dissolved (non-particulate) zinc concentration. Results indicate that the vast majority of ZnO transformation takes place within the first 24 h of incubation and is primarily driven by SLF pH and composition complexity. Significant dissolution of ZnO NPs was observed when incubated in Gamble's solution (between 25 and 68% depending on the matrix. Additionally, all ZnO solutions saw near immediate dissolution (~ 98-100%) within 3 h of incubation in artificial lysosomal fluid. Results illustrate potential for NPs in consumer products to undergo significant transformation during use and exposure over short time periods. Supplementary Information: The online version contains supplementary material available at 10.1007/s11051-022-05527-y.

7.
Nat Nanotechnol ; 17(4): 347-360, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35332293

RESUMO

Achieving sustainable agricultural productivity and global food security are two of the biggest challenges of the new millennium. Addressing these challenges requires innovative technologies that can uplift global food production, while minimizing collateral environmental damage and preserving the resilience of agroecosystems against a rapidly changing climate. Nanomaterials with the ability to encapsulate and deliver pesticidal active ingredients (AIs) in a responsive (for example, controlled, targeted and synchronized) manner offer new opportunities to increase pesticidal efficacy and efficiency when compared with conventional pesticides. Here, we provide a comprehensive analysis of the key properties of nanopesticides in controlling agricultural pests for crop enhancement compared with their non-nanoscale analogues. Our analysis shows that when compared with non-nanoscale pesticides, the overall efficacy of nanopesticides against target organisms is 31.5% higher, including an 18.9% increased efficacy in field trials. Notably, the toxicity of nanopesticides toward non-target organisms is 43.1% lower, highlighting a decrease in collateral damage to the environment. The premature loss of AIs prior to reaching target organisms is reduced by 41.4%, paired with a 22.1% lower leaching potential of AIs in soils. Nanopesticides also render other benefits, including enhanced foliar adhesion, improved crop yield and quality, and a responsive nanoscale delivery platform of AIs to mitigate various pressing biotic and abiotic stresses (for example, heat, drought and salinity). Nonetheless, the uncertainties associated with the adverse effects of some nanopesticides are not well-understood, requiring further investigations. Overall, our findings show that nanopesticides are potentially more efficient, sustainable and resilient with lower adverse environmental impacts than their conventional analogues. These benefits, if harnessed appropriately, can promote higher crop yields and thus contribute towards sustainable agriculture and global food security.


Assuntos
Nanoestruturas , Praguicidas , Agricultura , Segurança Alimentar , Solo
8.
Chemosphere ; 294: 133675, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35066080

RESUMO

Biochar can reduce lead (Pb) bioavailability to plants in metal-contaminated soil, but the ability of biochar to reduce the bioavailability of soil Pb to people and wildlife remains unknown. In this study, 17 biochars were evaluated as in situ amendments for three soils with distinct sources of Pb contamination (smelter emissions, ceramics waste, mining waste), hydrology (upland, well-drained soil vs submerged wetland soil), and biological receptors (human vs waterfowl). Biochars were made from blends of 30% manure (poultry litter or dairy manure) and 70% lignocellulosic material (wheat straw or grand fir shavings) and pyrolyzed at 300, 500, 700, and 900 °C. Soils were amended with 2% biochar (w/w) and incubated for 6 months. A suite of standard (e.g., EPA Method 1340) and experimental soil Pb bioaccessibility assays were used to assess the impact of the treatments. The results showed that biochar amendments to upland soils resulted in modest reductions in gastrointestinal Pb bioaccessibility (maximum reduction from 78 to 68% bioaccessibility as a percent of total, EPA Method 1340 at pH 2.5). In the wetland soil, sample redox status had a greater impact on Pb bioaccessibility than any amendment. Low-solubility Pb sulfides in this soil oxidized over the course of the study and no treatment was able to offset the increase in Pb bioaccessibility caused by this oxidation. The impact of redox status on Pb bioaccessibility was only evident when soil bioaccessibility assays were adapted to preserve sample redox status. This result highlights the importance of maintaining in situ redox conditions when processing/analyzing samples from low-oxygen environments and that soil remediation efforts should consider the role of redox conditions on Pb bioaccessibility.


Assuntos
Poluentes do Solo , Solo , Carvão Vegetal , Humanos , Chumbo , Oxirredução , Poluentes do Solo/análise
9.
SN Appl Sci ; 5: 1-12, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37383926

RESUMO

Fused filament fabrication is a 3D printing technique that has gained widespread use from homes to schools to workplaces. Thermoplastic filaments, such as acrylonitrile-butadiene-styrene (ABS) and polylactic acid (PLA), are extruded at temperatures near their respective glass transition temperature or melting point, respectively. Little has been reported on the inorganic elemental composition and concentrations present in these materials or the methods available for extracting that information. Because inorganic constituents may be included in the aerosolized particulates emitted during the printing process, identifying elements that could be present and at what specific concentrations is critical. The objective of the current research is to determine the range of metals present in thermoplastic filaments along with their relative abundance and chemical speciation as a function of polymer type, manufacturer, and color. A variety of filaments from select manufacturers were digested using a range of techniques to determine the optimal conditions for metal extraction from ABS and PLA polymers. The extraction potential for each method was quantified using by ICP-MS analysis. When possible, further characterization of the chemical composition of the filaments was investigated using X-ray Absorption spectroscopy to determine chemical speciation of the metal. Optimal digestion conditions were established using a high temperature, high pressure microwave-assisted acid digestion method to produce the most complete and repeatable extraction results. The composition and abundance of metals in the filaments varied greatly as a function of polymer, manufacturer, and color. Potential elements of concern present in the filaments at elevated concentration included that could pose a respiratory risk included Si, Al, Ti, Cu, Zn, and Sn. XAS analysis revealed a mixture of metal oxides, mineral, and organometallic compounds were present in the filaments that were being used to increase opaqueness impart color (dyes), polymeric catalysts, and flame retardants. This work shows that a variety of metals are present in the starting materials used for 3D printing and depending on their partitioning into 3D printed products and byproducts as well as the exposure route, may pose a health risk which merits further investigation.

10.
Sci Total Environ ; 788: 147907, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34134384

RESUMO

Over the last decade the growth of "nano-enabled" products have exploded in both industrial and direct to consumer applications. One area of interest is surface coatings, including paints, stains and sealants. Large scale applications of the products raise questions about both short- and long-term effects to both human and environmental health. Release of nanoparticles (NPs) from surfaces as a function of dermal contact is recognized as a potential human exposure route. Several standardized methods to quantify nanomaterial release have been previously used. In the current study, two standardized method were used to quantify the total mass of NPs released during sampling. ZnO (NPs) were used as a case study as they are commonly added to surface coatings to increase UV resistance. Particles were dispersed in Milli-Q water or a deck stain and applied to sanded plywood surfaces. Total release of Zn due to simulated dermal contact was evaluated using the Consumer Product Safety Commission (CPSC) and National Institute for Occupational Safety and Health (NIOSH) wipe methods. Additionally, three different sampling materials were tested. The total quantity of Zn released between the two methods was dependent upon the material used and how the ZnO was applied to the surface. Critically, less than 3% of the ZnO NPs applied to test surfaces was removed using either method. The results of this study demonstrate how different testing methodologies may result in varying estimates of human and environmental risk from NPs in surface coatings.

11.
Environ Toxicol Chem ; 40(7): 1829-1839, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33729607

RESUMO

Methylmercury (MeHg) is a highly toxic form of mercury that can bioaccumulate in fish tissue. Methylmercury is produced by anaerobic bacteria, many of which are also capable of MeHg degradation. In addition, demethylation in surface waters can occur via abiotic sunlight-mediated processes. The goal of the present study was to understand the relative importance of microbial Hg methylation/demethylation and abiotic photodemethylation that govern the mass of MeHg within an aquatic system. The study location was the Hells Canyon complex of 3 reservoirs on the Idaho-Oregon border, USA, that has fish consumption advisories as a result of elevated MeHg concentrations. Our study utilized stable isotope addition experiments to trace MeHg formation and degradation within the water column of the reservoirs to understand the relative importance of these processes on the mass of MeHg using the Water Quality Analysis Simulation Program. The results showed that rates of MeHg production and degradation within the water column were relatively low (<0.07 d-1 ) but sufficient to account for most of the MeHg observed with the system. Most MeHg production within the water column appeared to occur in the spring when much of the water column was in the processes of becoming anoxic. In the surface waters, rates of photodemethylation were relatively large (up to -0.25 d-1 ) but quickly decreased at depths >0.5 m below the surface. These results can be used to identify the relative importance of MeHg processes that can help guide reservoir management decisions. Environ Toxicol Chem 2021;40:1829-1839. © 2021 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Peixes , Mercúrio/análise , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise
12.
Environ Pollut ; 271: 116369, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33401216

RESUMO

Thousands of abandoned mines throughout the western region of North America contain elevated total-mercury (THg) concentrations. Mercury is mobilized from these sites primarily due to erosion of particulate-bound Hg (THg-P). Organic matter-based soil amendments can promote vegetation growth on mine tailings, reducing erosion and subsequent loading of THg-P into downstream waterbodies. However, the introduction of a labile carbon source may stimulate microbial activity that can produce methylmercury (MeHg)-the more toxic and bioaccumulative form of Hg. Our objectives were to investigate how additions of different organic matter substrates impact Hg mobilization and methylation using a combination of field observations and controlled experiments. Field measurements of water, sediment, and porewater were collected downstream of the site and multi-year monitoring (and load calculations) were conducted at a downstream gaging station. MeHg production was assessed using stable isotope methylation assays and mesocosm experiments that were conducted using different types of organic carbon soil amendments mixed with materials from the mine site. The results showed that >80% of the THg mobilized from the mine was bound to particles and that >90% of the annual Hg loading occurred during the period of elevated discharge during spring snowmelt. Methylation rates varied between different types of soil amendments and were correlated with the components of excitation emission matrices (EEMs) associated with humic acid fractions of organic matter. The mesocosm experiments showed that under anoxic conditions carbon amendments to tailings could significantly increase porewater MeHg concentrations (up to 13 ± 3 ng/L). In addition, the carbon amendments significantly increased THg partitioning into porewater. Overall, these results indicate that soil amendment applications to reduce surface erosion at abandoned mine sites could be effective at reducing particulate Hg mobilization to downstream waterbodies; however, some types of carbon amendments can significantly increase Hg methylation as well as increase the mobilization of dissolved THg from the site.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Monitoramento Ambiental , Mercúrio/análise , América do Norte , Solo , Poluentes Químicos da Água/análise
13.
Sci Total Environ ; 737: 139451, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32512308

RESUMO

As the market for "nano-enabled" products (NEPs) continues to expand in commercial and industrial applications, there is a critical need to understand conditions that promote release of nanomaterials and their degradation products from NEPs. Moreover, these studies must aim to quantify both the abundance and form (aggregates, ions, hybrids, etc.) of material released from NEPs to produce reasonable estimates of human and environmental exposure. In this work ZnO nanoparticles (NPs), a common additive in NEP surface coatings, were dispersed in Milli-Q water and a commercially available wood stain before application to pristine and weathered (outdoor 1 year) micronized copper azole pressure treated lumber (MCA). Coated lumber surfaces were sampled consecutively eight times using a method developed by the Consumer Product Safety Commission (CPSC) to track potential human exposure to ZnO NPs and byproducts through simulated dermal contact. Surprisingly, the highest total release of Zn was observed from aged lumber coated with ZnO NPs dispersed in wood stain, releasing 233 ± 26 mg Zn/m2 over the course of all sampling events. Alternatively, separate leaching experiments using a synthetic precipitation solution to simulate environmental release found aged lumber released significantly less Zn than pristine lumber when using the same coating formulation. Zinc speciation analysis also demonstrates that transformation of crystalline ZnO to Zn-organic complexes shortly after application to aged lumber. Regardless of experimental treatment, the majority of applied zinc (>75%) remains on the MCA surface. Finally, this work highlights how the nature of the screening technique (dermal contact vs. leaching) may result in different interpretations of exposure and risk.

14.
Sci Rep ; 10(1): 10316, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587274

RESUMO

Understanding civilizations of the past and how they emerge and eventually falter is a primary research focus of archaeological investigations because these provocative data sets offer critical insights into long-term human behavior patterns, especially in regard to land use practices and sustainable environmental interactions. The ancient Maya serve as an intriguing example of this research focus, yet the details of their spectacular emergence in a tropical forest environment followed by their eventual demise have remained enigmatic. Tikal, one of the foremost of the ancient Maya cities, plays a central role in this discussion because of its sharp population decline followed by abandonment during the late 9th century CE. Our results, based on geochemical and molecular genetic assays on sediments from four of the main reservoirs, reveal that two of the largest reservoirs at Tikal, essential for the survival of the city during the dry seasons, were contaminated with high levels of mercury, phosphate and cyanobacteria known to produce deadly toxins. Our observations demonstrate severe pollution problems at a time when episodes of climatic aridity were prevalent. This combination of catastrophic events clearly threatened the sustainability of the city and likely contributed to its abandonment.

15.
Chemosphere ; 249: 126173, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32065993

RESUMO

Research presented here utilizes silver nanoparticles (AgNPs) as a case study for how the immediate local environment alters the physical and chemical properties of nanomaterials. Dermal exposure is a primary route for exposure to many of the consumer products containing AgNPs. Interactions between AgNPs and human sweat/perspiration are critical for understanding how changes in Ag speciation will impact exposure. Previous studies have examined silver release from AgNP-containing products after exposure to artificial sweat (AS), however there is no basic assessment of how mixtures of AgNPs and AS alter the physical and chemical properties of AgNPs. The current research evaluated changes in size, aggregation, chemical composition, and silver speciation of four different sizes of AgNPs exposed to four different formulations of AS. The AS formulations were from standardized methods with different chemical compositions, ionic strengths, and pH. Samples were collected at four-time intervals for analysis using dynamic light scattering , UV-Vis spectroscopy, and single-particle inductively coupled plasma-mass spectrometry . Each mixture was also prepared for speciation analysis using X-ray absorption spectroscopy and scanning electron microscopy coupled to energy-dispersive X-ray analysis. The equivalent diameter measurements from the three techniques followed the order of DLS > UV-Vis > spICP-MS. Speciation analyses indicate significant changes for the smaller NPs, while the largest (100 nm) NPs had less measurable differences. This study shows the need to fully understand what specific information an analytical technique might provide and to use those techniques properly in tandem to give the fullest answer to a given research question.


Assuntos
Nanopartículas Metálicas/química , Prata/química , Suor/química , Difusão Dinâmica da Luz , Humanos , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Espectroscopia por Absorção de Raios X
16.
Sci Total Environ ; 707: 136031, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31869604

RESUMO

Remediation of mercury (Hg) contaminated sites has long relied on traditional approaches, such as removal and containment/capping. Here we review contemporary practices in the assessment and remediation of industrial-scale Hg contaminated sites and discuss recent advances. Significant improvements have been made in site assessment, including the use of XRF to rapidly identify the spatial extent of contamination, Hg stable isotope fractionation to identify sources and transformation processes, and solid-phase characterization (XAFS) to evaluate Hg forms. The understanding of Hg bioavailability for methylation has been improved by methods such as sequential chemical extractions and porewater measurements, including the use of diffuse gradient in thin-film (DGT) samplers. These approaches have shown varying success in identifying bioavailable Hg fractions and further study and field applications are needed. The downstream accumulation of methylmercury (MeHg) in biota is a concern at many contaminated sites. Identifying the variables limiting/controlling MeHg production-such as bioavailable inorganic Hg, organic carbon, and/or terminal electron acceptors (e.g. sulfate, iron) is critical. Mercury can be released from contaminated sites to the air and water, both of which are influenced by meteorological and hydrological conditions. Mercury mobilized from contaminated sites is predominantly bound to particles, highly correlated with total sediment solids (TSS), and elevated during stormflow. Remediation techniques to address Hg contamination can include the removal or containment of Hg contaminated materials, the application of amendments to reduce mobility and bioavailability, landscape/waterbody manipulations to reduce MeHg production, and food web manipulations through stocking or extirpation to reduce MeHg accumulated in desired species. These approaches often rely on knowledge of the Hg forms/speciation at the site, and utilize physical, chemical, thermal and biological methods to achieve remediation goals. Overall, the complexity of Hg cycling allows many different opportunities to reduce/mitigate impacts, which creates flexibility in determining suitable and logistically feasible remedies.

17.
Sci Total Environ ; 694: 133669, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31382174

RESUMO

Production and marketing of "nano-enabled" products for consumer purchase has continued to expand. However, many questions remain about the potential release and transformation of these nanoparticle (NP) additives from products throughout their lifecycle. In this work, two surface coating products advertised as containing ZnO NPs as active ingredients, were applied to micronized copper azol (MCA) and aqueous copper azol (ACA) pressure treated lumber. Coated lumber was weathered outdoors for a period of six months and the surface was sampled using a method developed by the Consumer Product Safety Commission (CPSC) to track potential human exposure to ZnO NPs and byproducts through simulated dermal contact. Using this method, the total amount of zinc extracted during a single sampling event was <1 mg/m2 and no evidence of free ZnO NPs was found. Approximately 0.5% of applied zinc was removed via simulated dermal contact over 6-months, with increased weathering periods resulting in increased zinc release. XAFS analysis found that only 27% of the zinc in the as received coating could be described as crystalline ZnO and highlights the transformation of these mineral phases to organically bound zinc complexes during the six-month weathering period. Additionally, SEM images collected after sampling found no evidence of free NP ZnO release during simulated dermal contact. Both simulated dermal contact experiments, and separate leaching studies demonstrate the application of surface coating solutions to either MCA and ACA lumber will reduce the release of copper from the pressure treated lumber. This work provides clear evidence of the transformation of NP additives in consumer products during their use stage.


Assuntos
Materiais de Construção , Nanopartículas/química , Madeira/química , Cobre , Pressão , Zinco
18.
Sci Total Environ ; 670: 78-86, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30903905

RESUMO

A major area of growth for "nano-enabled" products has been the addition of nanoparticles (NPs) to surface coatings including paints, stains and sealants. Zinc oxide (ZnO) NPs, long used in sunscreens and sunblocks, have found growing use in surface coating formulations to increase their UV resistance, especially on outdoor products. In this work, ZnO NPs, marketed as an additive to paints and stains, were dispersed in Milli-Q water and a commercial deck stain. Resulting solutions were applied to either Micronized-Copper Azole (MCA) pressure treated lumber or a commercially available composite decking. A portion of coated surfaces were placed outdoors to undergo environmental weathering, while the remaining samples were stored indoors to function as experimental controls. Weathered and control treatments were subsequently sampled periodically for 6 months using a simulated dermal contact method developed by the Consumer Product Safety Commission (CPSC). The release of ZnO NPs, and their associated degradation products, was determined through sequential filtration, atomic spectroscopy, X-Ray Absorption Fine Structure Spectroscopy, and electron microscopy. Across all treatments, the percentage of applied zinc released through simulated dermal contact did not exceed 4%, although transformation and release of zinc was highly dependent on dispersion medium. For MCA samples weathered outdoors, water-based applications released significantly more zinc than stain-based, 180 ±â€¯28, and 65 ±â€¯9 mg/m2 respectively. Moreover, results indicate that the number of contact events drives material release.

19.
Environ Toxicol Chem ; 37(7): 1969-1979, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29575127

RESUMO

One application of nanocopper is as a wood-preserving pesticide in pressure-treated lumber. Recent research has shown that pressure-treated lumber amended with micronized copper azole (MCA), which contains nanosized copper, releases copper under estuarine and marine conditions. The form of copper released (i.e., ionic, nanocopper [1-100 nm in size]) is not fully understood but will affect the bioavailability and toxicity of the metal. In the present study, multiple lines of evidence, including size fractionation, ion-selective electrode electrochemistry, comparative toxicity, and copper speciation were used to determine the form of copper released from lumber blocks and sawdust. The results of all lines of evidence supported the hypothesis that ionic copper was released from MCA lumber and sawdust, with little evidence that nanocopper was released. For example, copper concentrations in size fractionations of lumber block aqueous leachates including unfiltered, 0.1 µm, and 3 kDa were not significantly different, suggesting that the form of copper released was in the size range operationally defined as dissolved. These results correlated with the ion-selective electrode data which detects only ionic copper. In addition, comparative toxicity testing resulted in a narrow range of median lethal concentrations (221-257 µg/L) for MCA lumber blocks and CuSO4 . We conclude that ionic copper was released from the nanocopper pressure-treated lumber under estuarine and marine conditions. Environ Toxicol Chem 2018;37:1969-1979. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Cobre/análise , Nanopartículas/análise , Água do Mar/química , Madeira/química , Disponibilidade Biológica , Eletrodos Seletivos de Íons , Testes de Toxicidade , Poluentes Químicos da Água/análise , Espectroscopia por Absorção de Raios X
20.
Environ Toxicol Chem ; 37(7): 1956-1968, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29575152

RESUMO

Little is known about the release of metal engineered nanomaterials (ENMs) from consumer goods, including lumber treated with micronized copper. Micronized copper is a recent form of antifouling wood preservative containing nanosized copper particles for use in pressure-treated lumber. The present study investigated the concentrations released and the release rate of total copper over the course of 133 d under freshwater, estuarine, and marine salinity conditions (0, 1, 10, and 30‰) for several commercially available pressure-treated lumbers: micronized copper azole (MCA) at 0.96 and 2.4 kg/m3 , alkaline copper quaternary (ACQ) at 0.30 and 9.6 kg/m3 , and chromated copper arsenate (CCA) at 40 kg/m3 . Lumber was tested as blocks and as sawdust. Overall, copper was released from all treated lumber samples. Under leaching conditions, total release ranged from 2 to 55% of the measured copper originally in the lumber, with release rate constants from the blocks of 0.03 to 2.71 (units per day). Generally, measured release and modeled equilibrium concentrations were significantly higher in the estuarine conditions compared with freshwater or marine salinities, whereas rate constants showed very limited differences between salinities. Furthermore, organic carbon was released during the leaching and demonstrated a significant relationship with released copper concentrations as a function of salinity. The results indicate that copper is released into estuarine/marine waters from multiple wood treatments including lumber amended with nanoparticle-sized copper. Environ Toxicol Chem 2018;37:1956-1968. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Cobre/análise , Nanopartículas/análise , Água do Mar/química , Madeira/química , Arseniatos/análise , Carbono/análise , Cinética , Compostos Orgânicos/análise , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...